

Cutting queuing delay

Some advice for network device driver writers,
firmware developers, and hardware designers

Dave Taht
CTO, Teklibre, LLC
dave.taht@gmail.com
Co-Founder, Bufferbloat Project
Architect, CeroWrt project
Director ”Make-wifi-fast” project

One slide summary

● Get your firmware to buffer minimally (<1ms), provide hardware flow control and useful
statistics. Punt complexity to the OS.

● Get BQL support in your drivers, and turn on fq_codel in your network stacks. You’re shipping
4.1! Add 6 lines of code, do some testing, and boom, delay free product.

● Ship sqm-scripts for quality queue management via shaping
● Test at the lower rates especially for “latency under load”, “Bufferbloat”
● Always try to match the input rate to the output rate
● Think about these principles in future hardware designs.
● Take a look at “fq_codel for wifi” as one way to handle wildly variable line rates
● What I’m going to talk about applies primarily to ethernet, dsl, cable, gpon, fiber, wifi, 5G

enode bs, backhauls and handheld clients. Anybody using those?
● There are other solutions for data centers.
● I care primarily about the maddening parts of the internet that 6B people use in the last mile,

and want to see the technologies we’ve developed in the bufferbloat project “cross the chasm”
from early adoptors, geeks, and gamers into mainstream business gear.

About bufferbloat.net

We are a loose group of engineers, theorists, sysadmins, and academics
that really hate network latency.

● Working to reduce network lag (in linux and BSD) since 2011
– Old problems, new algorithms, new ideas, new code
– We’ve worked hard to not patent anything
– Mostly everything is open source, dual BSD and GPL licensed, and well described

in the literature in open access publications, IETF RFCs, upstreamed to Linux &
BSD, and so on.

– Backed by the open inventions network (OIN) & NLNET.
– Lots of help from OpenWrt, Google, Redhat, academia, and the open source

community.

● Reference source for codel, fq_codel, sch_cake, sqm-scripts, flent, and irtt
for linux, ns2, ns3.

About me

● I’ve been on the Internet, doing neat stuff, since 1985.
● In the bufferbloat project we’ve given away all the good stuff (who will pay for 7

years of R&D anymore?), my living comes from helping companies turn it into
product or into production and... sometimes solving thorny theory problems.

● I’m finishing up a project adding better wifi emulations to netem at google at the
moment. Also just finished shipping “sch_cake” in openwrt and linux mainline.

● I’m mostly interested in filling the gap between theory and reality, between papers
and product.

● Lab notebook and rants: http://blog.cerowrt.org/post/
● I’d dearly like to rip the inessential latency out of everything.
● This talk is not about the technical details of fq, codel, fq_codel, bql, nor all the

theory behind them. It’s about the APIs to reduce latency.
● There’s plenty of other talks on this link.

https://www.bufferbloat.net/projects/cerowrt/wiki/Bloat-videos/

Bad Latency is everywhere

● Keyboard latency – Dan luu
● Network latency – what this talk is about
● Video latency – 16ms frames are worse than scanlines were in

some applications
● HDMI and up/down conversion latency
● Audio latency
● Fly by wire latency – in any form of R/T control
● GPU latency
● Videoconferencing encoder/decoder latency
● I hate latency, generally. I’d rather drive a sportscar than an RV.

https://danluu.com/keyboard-latency/

What’s bufferbloat?

● Buffering is what do you do when offered load exceeds
capacity. Bufferbloat is what happens when you mistakenly
think that alone can solve reducing the load.

● See wikipedia for more.
● Excess buffering is everywhere:

– http://www.dslreports.com/speedtest/results/bufferbloat
– http://www.dslreports.com/speedtest/results/bufferbloat?up
– But new techniques have emerged to combat it.
– Excess buffering makes network congestion worse.

http://www.dslreports.com/speedtest/results/bufferbloat
http://www.dslreports.com/speedtest/results/bufferbloat?up

Carmageddon

50 lanes squeezed into 20. 2.5x1 ratio of input to
output led to hours of delay, for cars.

https://www.citylab.com/transportation/2015/10/chinas-50-lane-traffic-jam-is-every-commuters-worst-nightmare/409639/

The car traffic analogy is flawed
● Packets aren’t cars.
● With FQ, bicycles, pedestrians, motorcycles all slip through.
● With dropping or AQM we blow up 60% of the cars on this road so traffic flows

smoothly. Or with ECN paint them and hope the tcp on the other side notices
the graffiti and slows down.

● With TCP congestion control, cameras send signals back to people on the on-
ramps miles behind to stay off the road as a function of the number of crashes.

● This is all stuff that humans do, but networks don’t.
● The vehicle traffic analogy remains seriously flawed. For example, there is

actually a 50,000x1 ratio between fastest and slowest links in networking.
● Van Jacobson uses an analogy of a fountain nowadays. We tend to use bottles

of water going into funnels. They’re still just analogies!

Quick Bufferbloat Demo

● Lesson: Always measure what’s received, not what’s
sent.

● “Carmageddon” - 50 lanes to 20. A 2.5x1 ratio of input
to output led to hours of delay, for cars.

● The internet is worse: 50,000x1, from 100gbit to
128kbit. How do we deal with a rate change like that?

https://www.citylab.com/transportation/2015/10/chinas-50-lane-traffic-jam-is-every-commuters-worst-nightmare/409639/

What Does bad latency mean?

● Both the up and down latency numbers are
important. Round Trip Time (RTT) matters most.
– Latency happens on every packet
– A typical TCP connection takes 5 RTTs to first

usable byte.
– You click, at a 50ms RTT, and won’t see a result for

250ms.

● Lots of work (like QUIC, TCP FAST OPEN) “out
there” to reduce the number of RTTs.

The Bandwidth Fallacy

● Bandwidth = data/interval
● Humans and marketing folk tend to use mbits/second
● But: Humans can feel intervals as low as 4ms.
● If it takes 250ms from clicking on a web page, until the

first useful byte… what’s the bandwidth for the first
249ms?

 ZERO

● A better measure might be kbit/ms or kbit/us or bit/ns,
and measuring time to first byte. Even 10ms is a LOT.

We care about the RTT

Typical Cablemodem latencies
UNLOADED UP: 16ms DOWN: 22ms
LOADED UP: 280ms DOWN: 680ms

http://www.pollere.net/Pdfdocs/QrantJul06.pdf
http://www.pollere.net/Pdfdocs/QrantJul06.pdf

Some advice for driver writers

● Keep track of bytes outstanding, not packets
● Enable FQ_codel
● Test for web page load time (PLT), VOIP MOS,

Videoconferencing, while under load…
– And weight those benchmarks higher than raw

bandwidth you can achieve with tcp and udp flooding
tests.

– Measure latency under load.
– Measure under small (20ms or less) intervals

Byte Queue Limits (BQL)

● Measures the necessary latency required for interrupt service time in the OS, based on
workload, to manage a packet ring buffer to have “just enough” bytes outstanding
– Bytes = ~time
– At gigE, on intel, BQL is typically 40-128k per hardware queue.
– At 10Mbit – 3k.
– Packet ring buffers typically 512 entries up to 64k each
– BQL Autoscales from 1 packet to thousands, from 0kbit to 50+Gbit

● BQL, as implemented, is MIAD (multiplicative increase, Additive decrease), not AIMD.
– In theory, this is unstable
– In practice, it hasn’t mattered much
– It probably matters with lots of hardware queues

● I have no idea what other Oses do.
● It’s a good idea that should also end up in more firmware.
● BQL was the fundamental building block that the debloating effort was built on.
● It’s in 36 ethernet drivers including all of broadcom’s.

BQL was invented by Tom Herbert in 2011

Adding BQL is easy

● On the sent path
– Use netdev_tx_sent_queue

● On the receive path
– Use netdev_tx_completed_queue

● In the reset routine(s)
– netdev_reset_queue(dev)

BQL: Sent and completed hooks
diff --git a/drivers/net/ethernet/broadcom/genet/bcmgenet.c b/drivers/net/ethernet/broadcom/genet/bcmgenet.c
index 49f132c..8150c74 100644
--- a/drivers/net/ethernet/broadcom/genet/bcmgenet.c
+++ b/drivers/net/ethernet/broadcom/genet/bcmgenet.c
@@ -1221,8 +1221,10 @@ static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
 dev->stats.tx_packets += pkts_compl;
 dev->stats.tx_bytes += bytes_compl;

+ txq = netdev_get_tx_queue(dev, ring->queue);
+ netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
+
 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
- txq = netdev_get_tx_queue(dev, ring->queue);
 if (netif_tx_queue_stopped(txq))
 netif_tx_wake_queue(txq);
 }
@@ -1516,6 +1518,8 @@ static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
 ring->prod_index += nr_frags + 1;
 ring->prod_index &= DMA_P_INDEX_MASK;

+ netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
+
 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
 netif_tx_stop_queue(txq);

Cleanup handlers
@@ -2364,6 +2368,7 @@ static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
 {
 int i;
+ struct netdev_queue *txq;

 bcmgenet_fini_rx_napi(priv);
 bcmgenet_fini_tx_napi(priv);
@@ -2378,6 +2383,14 @@ static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
 }
 }

+ for (i = 0; i < priv->hw_params->tx_queues; i++) {
+ txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
+ netdev_tx_reset_queue(txq);
+ }
+
+ txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
+ netdev_tx_reset_queue(txq);
+
 bcmgenet_free_rx_buffers(priv);
 kfree(priv->rx_cbs);
 kfree(priv->tx_cbs);
--
2.7.4

Adding BQL can be tricky

● You can’t just blindly add it.
– You have the hardware in front of you
– Devices & drivers tend to “pad” the sent vs received

stats and they need to match exactly
– Finding all the places where a reset can happen can

take time – and a lot of resets!
– Getting it wrong almost immediately hangs the driver
– “Git log” will show you where others went wrong

● Still, it’s only ~6 lines of new code in your driver!

BQL @ broadcom

● In Linux 4.17 BQL is supported by all the broadcom Sky2, bnx2x, b44, and
bgmac, bnxt ethernet drivers. CONGRATS!

● But: BQL is ALSO useful for any device driver with a ringbuffer
– Try it there. DSL, Cable modems, fiber ONTs, etc

● If you don’t think BQL’s useful, try disabling it in one of your ethernet
drivers
– For I in /sys/class/net/your_device/queues/tx*/byte_queue_limits/limit_min
– do echo 10000000 > $I
– Done

● And measure latency under load at 10, 100, 1gbit, 10gbit.
● And then get it into everything else!
● (I’ll show what that looks like later in the talk)

Fair queuing

● Is generally implicit...
– You multiplex all the ports on a switch

● Use VOQs to further break up flows
● Have multiple hardware queues in an ethernet device
● More entropic than “fair”
● Big Dumb Buffers elsewhere.

● FQ fits more flows into a RTT
● FQ balances demand faster

In 2012, Van Jacobson sayeth:
“FQ_Codel provides great isolation... if you have low
rate videoconferencing and low rate web traffic they
never get dropped. A lot of issues with IW10 go away,
because all the other traffic sees is the front of the
queue. You don't know how big its window is, but you
don't care because you are not affected by it.”

“FQ_Codel increases utilization across your entire
networking fabric, especially for bidirectional traffic...”

“If we're sticking code into boxes to deploy codel, don't
do that.

 Deploy fq_codel. It's just an across the board win.”

 - Van Jacobson IETF 84 Talk

So that’s what we did!
Some form of FQ for networks has swept the linux world.

● fq_codel default in openwrt, most third party router firmwares
● sch_fq used at google.
● fq_codel default for linux distros using systemd
● fq_codel/cake of the QoS system in a zillion products in many rebranded

ways creating “smart queue management” (SQM)
● fq_codel part of linux wifi now for 3 chipsets
● Available in freebsd, pfsense, also
● Some success stories to follow:

– DSL with BQL + fq_codel:
– Cable
– Fiber
– Wifi

DSL w/hw flow control,
bql, and fq_codel

https://thecruskit.com/fixing-home-adsl-latency-under-load-with-fq_codel/
http://burntchrome.blogspot.com/2014/05/i-dont-like-this-pie-more-bufferbloat.html

Cake v Sonic Fiber @100Mbit
60ms FIFO
GPON ONT

1ms LESS latency
Under load w/cake

Smart Queue Management
on cablemodems

Before: http://www.dslreports.com/speedtest/36930164

After: http://www.dslreports.com/speedtest/36209937

FQ_Codel for WiFi

● See: Ending the Anomaly
– 10x reduction in latency across all rates, 5x improvement in multi-station throughput
– Code for Qualcomm’s ath9k and ath10k chips
– Code for MediaTek’s Mt62 chip
– Nothing else (yet) I’m aware of
– Thousands of horrifically bad wifi designs to fix.

● Abstractions arriving to generalize this to make it work on more chips like
broadcom’s
– But you still need to do driver and firmware work to use it

● Still work to do (dynamically adjusting TXOP length)
● 802.11ax has some nice features, haven’t tried yet, would love to try
● See make-wifi-fast at lists.bufferbloat.net

Device Driver Writer Summary

● Add BQL everywhere!
● Default to fq_codel if you have BQL
● Or shape based on interface statistics using

htb+fq_codel or sch_cake
● Weight PLT, VOIP, and interactive tests higher than

pure bandwidth
● Profit!
● The stack above your driver is debloated… but you

need co-operation from the firmware folk also.

https://arxiv.org/pdf/1703.00064.pdf

Firmware writers

● Never eat more than 2x you can send in a ms
● If you must buffer, buffer smartly (FQ, AQM)
● Signal up the stack that “you’re full now”.
● Do the real time tasks, but punt to the OS for

anything complicated.
● If you can’t buffer smartly, provide useful statistics

about physical rate and queue occupancy so
something smarter up the stack can get it.

Example: LTE USB modem

● It has 32k of buffer.
● I get 800kbit/sec out of it going up.

– With 200ms totally unneeded latency

Another example
Ethernet over powerline... sucks

● Two really good examples of how to get network buffering wrong:
● https://pdfs.semanticscholar.org/271b/39469241f072a6a7fd594875e2a20

8ed6ce5.pdf
● http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.278.6149&rep=rep1&type=pdf
– Horrifically bad, noisy environment… so, just add
– tons of buffering
– And only exert hw flow control after that fills up!
– Homplug devices are poster children for bufferbloat
– 2 second delays!

● Not sure if BQL would work, something more like fq_codel_for_wifi might
● I have no idea what OS runs on these things

While I’m at it, 5G bugs me

● Everybody’s slides brag about 1ms “mac” delay
– And a glorious low latency world full of sensors, cameras, robots,

games, and applications.

● Nobody talks about current LTE queuing delay
– Frequently measured in SECONDS

● Some radicals “get it”
– Shorter queues make handoffs easier
– FQ makes more traffic responsive to congestion signals
– “Managing radio networks in an encrypted world”

● Handsets, ENODE-Bs, backhauls are all bufferbloated

https://pdfs.semanticscholar.org/271b/39469241f072a6a7fd594875e2a208ed6ce5.pdf
https://pdfs.semanticscholar.org/271b/39469241f072a6a7fd594875e2a208ed6ce5.pdf

Some latency + bandwidth
measurement tools

● Old fashioned test tools we use
– TCPTRACE
– XPLOT
– We live and die by these

● New fangled tests
– IRTT – Isochronous round trip tester (with OWD)
– Flent – 100s of tests that repeatably create and plot

many forms of network traffic
– Both are free software.

http://dirk-kutscher.info/publications/managing-radio-networks-in-an-encrypted-world-2/

IRTT one way delay measurements
seq=10 rtt=12.13ms rd=8.14ms sd=3.99ms ipdv=1.13ms
^Cinterrupt

 Min Mean Median Max Stddev
 --- ---- ------ --- ------
 RTT 12.13ms 13.15ms 13.24ms 13.94ms 511µs
 send delay 3.99ms 4.67ms 4.44ms 6.09ms 609µs
 receive delay 7.85ms 8.48ms 8.46ms 9.06ms 380µs

 IPDV (jitter) 20.6µs 480µs 408µs 1.13ms 332µs
 send IPDV 69.5µs 590µs 437µs 1.37ms 464µs
 receive IPDV 262µs 520µs 483µs 791µs 191µs

 send call time 15.2µs 15.6µs 16.2µs 368ns
 timer error 3.1µs 30.6µs 177µs 51.7µs
 server proc. time 12.7µs 14µs 15.6µs 1.16µs

 duration: 10.7s (wait 0s)
 packets sent/received: 11/10 (9.09% loss)
 server packets received: 10/11 (9.09%/0.00% loss up/down)
 bytes sent/received: 660/600
 send/receive rate: 527 bps / 480 bps
 packet length: 60 bytes
 timer stats: 0/11 (0.00%) missed, 0.00% error

https://github.com/heistp/irtt

4 hw queues, bql – auto
fq_codel

https://github.com/heistp/irtt

Flent’s tcp square wave test
sch_cake shaped 100Mbit

Flent’s tcp square wave test
No BQL, 1000 packet FIFO

This is basically today’s view
of the Internet from the cloud

Comparing results

Advice for hardware designers

● Provide useful statistics (error rate, line rate),
● Allow for hardware flow control
● The world is full of great ideas for FQ & AQM

– Explore some of them

● Offloads for IP hashes, timestamps, invsqrt (codel)
● Sigh: after all this work cutting queue delay in the stack,

Soc’s are gaining on-board switches with more buffering
– Please use small bufffers
– Please build in better switches with VOQ/FQ/AQM

HW I dream of

● CPUs that can do 30 ops/cycle and context switch in 5
cycles like Mill Computer’s design

● Switches that do FQ by default
● CMTSes & DSLAMS that don’t have seconds of

buffering
● Competently built DSL & Cablemodems
● Of citywide networks with 1ms edge to edge latency
● Of highly interactive VR and AR applications co-

existing with fat film flows.

Next Steps

● Run back to your desk & see if BQL or fq_codel
help you, your server or your chip

● Go home, try dslreports bufferbloat test.
● Try an OpenWrt router with sqm enabled.
● Drop in on the mailing list or irc channel!

https://apenwarr.ca/log/?m=201808

“Evolving from as fast as possible
- Teaching NICs about time”

● Van Jacobson’s great talk at netdevconf
– Get rid of queues!
– Switch to timer wheels!
– Let the host schedule all the packets!
– network scaling issues past 100GigE solved!
– Film at 11.

● Please feel free to ask me technical details of various FQ
and AQM algorithms, sch_cake, ecn, 802.11ax, the babel
routing protocol, or opine on any other topic.

● The only public info on this is in Van’s talk.

Any questions?

https://netdevconf.org/0x12/session.html?evolving-from-afap-teaching-nics-about-time

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 45

